

6th International Conference on Railway Operations Modelling and Analysis – RailTokyo2015

Optimisation Framework for Rail Traffic Control at a Single Junction

Fang Xu
Prof Benjamin Heydecker
Dr Andy Chow
Dr Taku Fujiyama

Centre for Transport Studies
University College London

Outline

- 1. Introduction
- 2. Optimisation Framework
- 3. Optimisation Models
 - Trajectory optimisation
 - Sequence optimisation
- 4. Case Study: Edgware Road Station
- 5. Conclusion

Introduction

RTS

- Real-time traffic management
- High capacity, energy-efficient, on-time

Strategy

Right place, right time and right speed

Method

- Use of real-time data on train position and speed
- Dynamic optimisation of train movement

Example: Edgware Road Station

- Integrate energy optimisation with real-time rescheduling
- Optimise train sequence at junctions
- Optimise speed profiles within sections

Trajectory Optimisation

Plan movement of each train to specified point, arriving at

- Right position
- Right time
- Right speed

Achieve exit speed to limit further delays downstream

Manage energy usage

Consider:

- Tractive force available
- Resistive forces
 (both of which depend on train speed)
- Line speed limit

Model

- Only tractive force is supplied by train engine
- Continuous acceleration
- Minimise mechanical energy
- Newton's second law of motion
- Boundary conditions: time, position, speed
- Other constraints: Acceleration/braking capabilities

Mathematical model

Minimise energy (without considering gradient)

$$\min E = \int_0^T u_{tr}(t) v_t dt$$

Subject to

$$\dot{v} = u_{tr}(t) - u_b(t) - F_R(v_t)$$
$$\dot{x} = v_t$$

The boundary conditions of this problem are

$$v(0) = v_0, v(T) = v_T$$

 $x(0) = x_0, x(T) = x_T$
 $0 \le u_{tr}(v) \le g_{tr}(v)$
 $0 \le u_b(v) \le g_b(v)$

Optimality of this model

Pontryagin's minimum principle: five optimal regimes

- Traction regime
- Cruising regime
- Coasting regime
- Stabilization regime
- Braking regime

Solution approach: heuristic control

b.
$$v_{exit} > v_T(coasting)$$

Sequence Optimisation

Sequence of trains at the junction is optimised

Plan sequence to minimise:

- knock-on delay of trains
- over short-term future

Combine with trajectory optimisation

- blocking time model
- alternative graph

Alternative Graph

Alternative Graph

 p_{ik} : Running time of train i on section k $t_{ik+1} \ge t_{ik} + p_{ik}$

 a_{ijk} : Clearing, switching time of train i on section k, plus sight and reaction time of train j when approaching section q

$$t_{ik} \ge t_{jq} + a_{ijk}$$

Solution approach

- Sequence solution: heuristic method
- Check time feasibility between consecutive trains at each block section using blocking time model
- Update speed and time at boundaries of block section
 - Trajectory optimisation
 - Current position/speed of the train
 - Earliest clearing time of downstream signal
 - Scheduled speed profile as reference

Edgware Road Station

- Change times of signal and point status are considered
- ➤ 14 H&C line services, 15 Circle/District line services
- Dwell times at station are constant
- Comparison of speed coordination process with/without trajectory optimisation
- Various initial headways

Speed control strategy

Performance results

Scenario	Hierarchical Optimisation with Trajectory Optimisation			Variable Speed Conflict Resolution without Trajectory Optimisation		
$\sigma(s)$	Max Delay (s)	Mean Delay (s)	Total Energy Consumption (kWh)	Max Delay (s)	Mean Delay (s)	Total Energy Consumption (kWh)
0	2.46	2.04	135.94	4.55	3.76	148.92
30	19.31	3.60	138.51	24.48	5.08	145.12
60	23.81	3.31	139.68	27.64	4.41	144.20
90	49.65	7.10	140.19	52.63	8.34	144.83
120	103.26	17.48	142.18	107.26	19.39	146.43

- Knock-on delay: 1~2 seconds saved
- Energy consumption: 2.9% ~4.5% saved
- Similar computational time

Benefits of optimisation

- Optimisation framework
 - Effective response to perturbation
 - Reduce delay propagation and knock-on delay
 - Reduce energy usage
- Speed control
 - Efficient for real-time traffic control
 - > Plan punctual train operations (time, speed)

Conclusion

Distributed optimisation (sequence and trajectory) improves performance

- Informed trajectory and sequence control can save:
 - > Energy
 - > Travel time
- Aids recovery after perturbation
- Capacity improvement on bottleneck section

Rapid calculation of speed profile can be applied on-line for real-time rescheduling

Thank You!

Q&A