Avoid the Overflow of Disaster Victims around the Railway Station
- via Adaptive Management of Passengers’ Routes and Train Schedule -

Chiba University
Hino Yoko, Arai Sachiy0

2015.3.25 RailTokyo 2015
Outline

1. Background
2. Objective
3. Approach
 - Definition
 - Preliminary Experiment
 - Passengers’ Route Assignment
 - Modify Train Schedule
4. Conclusion
Background

2011.3.11 the Great East Japan Earthquake (Japan)

<table>
<thead>
<tr>
<th>Caused by Nature</th>
<th>Caused by Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>unavailable Major Train Line</td>
<td>resumed partial line</td>
</tr>
<tr>
<td>cannot reach home</td>
<td>rush to the station</td>
</tr>
<tr>
<td>emerge Stranded Commuter cannot avoid</td>
<td>overflow the station’s capacity</td>
</tr>
<tr>
<td></td>
<td>cause additional re-stop</td>
</tr>
<tr>
<td></td>
<td>worsen Stranded Commuter</td>
</tr>
</tbody>
</table>
Objective

Partial Resumption → Capacity Overflow → Additional Re-Stop → Reach Home Early

negative circle

impossible to ensure the safety

impede the recovery
Objective

- **Hardware measures**
 - expand the station ← carry a cost
Objective

Software measures

Change

1. Passengers’ Route
2. Train Schedule

Partial Resumption → Capacity Overflow

Additional Re-Stop → Reach Home Early
Definition

- calculate the number of passengers in the station

$$n_i = H_{i}^{in} + H_{i}^{pass} + H_{i}^{transfer} + H_{i}^{out}$$

Station s_i

- come in as Origin
- getting out at Destination

Passed the prior train because of full

Waiting to transfer
Definition

- calculate the number of passengers in the station

Station s_i

$$n_i = H_i^{in} + H_i^{pass} + H_i^{transfer} + H_i^{out} \geq \text{capacity}$$

Maximum

Capacity Overflow

overflowed passenger
Preliminary Experiment

- simulate passengers’ translation in normal train service
- estimate the number of passengers in each time
- make the maximum value as capacity

Railway Network

Station
- Train line
Cost of the link : Required time to go through
Preliminary Experiment

- Passengers’ Settings
 - move through the shortest route
 - follow actual data of Shibuya Station’s inflow

Set up approximate curve by least square method

\[
y = -0.0123x^3 + 0.037x^2 + 177.74x + 8822.2
\]
Result: Preliminary Experiment

\[<\text{Station } s_1>\]

Maximum value
\[= 437\]

decide Maximum value as the capacity

\[<\text{Station } s_2>\]

\[c_2 = 381\]

\[<\text{Station } s_3>\]

\[c_3 = 1263\]

\[<\text{Station } s_4>\]

\[c_4 = 1263\]
Result : Preliminary Experiment

\(< \text{Station } s_1 > \) \quad c_1 = 437

Maximum value
= 437

\(< \text{Station } s_2 > \) \quad c_2 = 381

\(< \text{Station } s_3 > \) \quad c_3 = 1263

\(< \text{Station } s_4 > \) \quad c_4 = 1263

decide Maximum value as the capacity
1. Passengers’ Route Assignment

- Objective:
 change the Passengers’ route not to overflow the capacity

- formulate as Constraint Satisfaction Problem
 - Constraint

\[n_i(t) \leq c_i \]

(\(t : \) time step [min.])

satisfy the constraints while waiting

- use Backtracking Algorithm to search the route
- adopt Dijkstra method to decide searching order by the shortest route
1. Passengers’ Route Assignment

![Diagram showing route assignment]

The diagram illustrates the assignment of passengers' routes, with the origin at 1 and the destinations at various points. The shortest route, marked as $n_1(t) \leq c_1$, is highlighted.
1. Passengers’ Route Assignment

\[n_1(t) \leq c_1 \]
1. Passengers’ Route Assignment

- ② secondary shortest route
- Origin
- Backtrack
- $n_1(t) \leq c_1$
- Destination
- Repeat the process until you reach destination
- make possible to disperse passengers’ route
Experiment: Passengers’ Route Assignment

Settings
- equal to Preliminary Experiment
- adopt capacity c_i obtained from Preliminary Experiment
- stop all trains in the first 90[min.]

Proposal:
change the route by backtracking & avoid capacity overflow

Comparison (passenger’s natural behavior):
go on only the shortest route & avoid capacity overflow
wait until they are allowed to enter the station
Result: number of passengers in the station

![Graphs showing passenger numbers at stations s1, s2, s3, and s4 over time.]

- control overflow than passengers’ natural behavior
Result: overflowed passengers upon delay time

- decrease overflow than passengers’ natural behavior in any delay time

Comparison
- lower overflowed passengers by 21.04%

Proposal
- appear difference after 40 minute
2. Modify Train Schedule

- Objective:
 change the **Train schedule** to reduce the overflowed passengers
- formulate as **Combinatorial Optimization Problem**
- solve by means of **Genetic Algorithm**

- Objective function

\[
\text{min. fitness} = \sum_{i=1}^{4} (n_i(t) - c_i)
\]

unless \((n_i(t) - c_i) \leq 0\)

- minimize the overflowed passengers

\[
\]
2. Modify Train Schedule

- define individual
 - one of the elements of Train Schedule
 - length of stoppage time of each train at each Station

- Stoppage time

<table>
<thead>
<tr>
<th></th>
<th>Station s_1</th>
<th>Station s_2</th>
<th>Station s_3</th>
<th>Station s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train v_1</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
</tr>
<tr>
<td>Train v_2</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
</tr>
<tr>
<td>Train v_3</td>
<td></td>
<td></td>
<td></td>
<td>x_{10}</td>
</tr>
<tr>
<td>Train v_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- search the optimal combination of variables
2. Modify Train Schedule

Algorithm

- Initial schedule
- simulate passengers’ translation
- calculate fitness
- selection, crossover, mutation
- satisfy end condition
- YES
- NO
- simulate passengers’ translation
- calculate fitness
- End
2. Modify Train Schedule

- **Proposal**
 Passengers’ Backtracking Route
- **Comparison (natural behavior)**
 wait on the Shortest Route

- Algorithm
 - Initial schedule
 - simulate passengers’ translation
 - calculate fitness
 - selection, crossover, mutation
 - satisfy end condition
 - create Train Schedule with Individual which minimize the fitness

① Proposal
Passengers’ Backtracking Route
② Comparison (natural behavior)
wait on the Shortest Route
Result: sum of overflowed passengers

Change Train Schedule with Proposal Route

Decreased by 8.83%

Change Train Schedule with Comparison Route

Decreased by 24.38%

The both overflowed passengers decreased
- have still lower by 20.94% than comparison after modifying the Train Schedule
Conclusion

- focused on the software measure to avoid capacity overflow
- proposed to change Passengers’ Route not to overflow
 - solve as Constraint Satisfaction Problem
 - control and decrease the overflow by 21.04%
- proposed to change Train Schedule which reduce overflow
 - solve by means of Genetic Algorithm
 - decreased 8.83% of the overflow after modifying the Train Schedule
- decreased 29.04% overflowed passengers by changing both Passengers’ route & Train schedule
- changing only software are also effective to prevent overflow
Thank you for your kind attention.
Result: total trip time upon delay time

- Shorten total trip time than passengers’ natural behavior in any delay time

- 11.83% shorten in delay time
Time Complexity

- **Station number is** \(n \)

\[
\text{Number of judging} \times (n - 1) \times n^2
\]

- **Worst-case execution time**

\[
O(8(n - 1)n^2) = O(n^3)
\]
Station number is \(n \)

\[n \times (n-1) \times n^2 \]

※ if the train line (degree) increase, the route increase & directly affect the number of judging
time complexity

- Station number is n

<table>
<thead>
<tr>
<th>n</th>
<th>degree</th>
<th>Number of judge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>651</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>3913</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>27399</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>219201</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>n</td>
<td>$n-1$</td>
<td></td>
</tr>
</tbody>
</table>

Estimate worst judging time

With the complete graph

- Only 15 train lines in Shinjuku station

Combinatorial Explosion