Energy-Saving Train Scheduling Diagram for Automatically Operated Electric Railway

Shoichiro WATANABE (Ph.D. Candidate)
Takahumi KOSEKI (Professor)

RailTokyo 2015,
6th International Conference on Railway Operations Modelling and Analysis
Oral Session: Energy-efficient driving and driver advisory systems
Outlines

• Introduction & Purpose

• (1) Energy-Saving Operation for A Train
 • Power-limiting Brake
 • Advantages of ATO

• (2) Energy-Saving Train Scheduling
 • Basic Approach
 • Application to Practical Train Scheduling with Proposed Methods

• Analysis for Energy-saving Scheduling

• Conclusions & Future Work
Outlines

• Introduction & Purpose

• (1) Energy-Saving Operation for A Train
 • Power-limiting Brake
 • Advantages of ATO

• (2) Energy-Saving Train Scheduling
 • Basic Approach
 • Application to Practical Train Scheduling with Proposed Methods

• Analysis for Energy-saving Scheduling

• Conclusions & Future Work
• A Key to Solving Environment Problems

• Some technologies have been developed
 • Hardware side ➔ Storages, Power device, Conversion control

• Software side

 (1) **Energy-saving operation**
 Optimal energy-saving running curve between two station ➔ Best use of regenerative braking with ATO

 (2) **Energy-saving scheduling**
 Optimisation to change running time between every pairs of stations based on (1) Energy-saving operation
Outlines

- Introduction & Purpose
- (1) **Energy-Saving Operation** for A Train
 - Power-limiting Brake
 - Advantages of ATO
- (2) **Energy-Saving Train Scheduling**
 - Basic Approach
 - Application to Practical Train Scheduling with Proposed Methods
- Analysis for Energy-saving Scheduling
- Conclusions & Future Work
Energy-saving operation\(^{(11)}\) was

i. Restriction of **running time** for scheduling

ii. Max accelerating, coasting and **power-limiting braking**

The best use of the regenerative brakes

The diagram shows relationships of energy consumption:

\[A < B \]

Advantages of ATO in Operation

- The railway car is controlled by on-board computers
 1. Install optimised energy-saving operation in ATO

- ATO system can keep running times with accuracies on the order of seconds
 2. Design the optimised schedule between every pairs of stations based on this energy-saving operation
Advantages of ATO in Operation

- The railway car is controlled by on-board computers
 - (1) Install optimised energy-saving operation in ATO

- ATO system can keep running times with accuracies on the order of seconds
 - (2) Design the optimised schedule between every pairs of stations based on this energy-saving operation

How to design the optimised schedule based on (1) energy-saving operation?
Outlines

• Introduction & Purpose

• (1) Energy-Saving Operation for A Train
 • Power-limiting Brake
 • Advantages of ATO

• (2) Energy-Saving Train Scheduling
 • Basic Approach
 • Application to Practical Train Scheduling with Proposed Methods

• Analysis for Energy-saving Scheduling

• Conclusions & Future Work
Basic Approach – Change The Running Time –

Conventional schedule

Running time
- Station A: 60 sec
- Station B: 60 sec
- Station C: 120 sec
- Station D: 180 sec

Optimal schedule

Running time
- Station A: 50 sec
- Station B: 80 sec
- Station C: 130 sec
- Station D: 50 sec

Energy-Saving

Total running time is not changed
Basic approaches\(^{(15)}\) are as follows:

1. Calculate the relationship between energy consumption and running time for each section.
2. Differentiate each curve of each section.
3. Choose the same differentiated value for each section.

The result obtained is some decimal-point value.

Accomplish scheduling in a practical manner with \textbf{integer value}.

• Calculate the running curve based on energy-saving operation.
• Energy consumption E_i and running time t_i in the i-th section are determined.
• **Change the notch-off speed** and calculate the running curve.

• E_i and t_i in the i-th section will **change**.

Step-by-Step Procedure

Step 1
- Calculate E_i & t_i

Step 2
- Change notch-off speed

Step 3
- Plot E_i & t_i

Step 4
- $\theta_i = \frac{\partial E_i}{\partial t_i}$

Step 5
- Plot θ_i and t_i

Step 6
- Sum up a total running time T

Step 7
- Determine the optimal running time t_i
• Plot a graph with t_i on the x axis and E_i on the y axis.

Step 1
- Calculate E_i & t_i

Step 2
- Change notch-off speed

Step 3
- Plot E_i & t_i

Step 4
- $\theta_i = \frac{\partial E_i}{\partial t_i}$

Step 5
- Plot θ_i and t_i

Step 6
- Sum up a total running time T

Step 7
- Determine the optimal running time t_i
Differentiate energy consumption with respect to running time

Calculate the slope of the straight line that can be drawn between any two points.

\[\theta_i = \frac{\partial E_i}{\partial t_i} \] is energy time sensitivity in the \(i \)-th section.

\[\theta_i = \frac{\partial E_i}{\partial t_i} \]

Steps

Step 1
- Calculate \(E_i \) & \(t_i \)

Step 2
- Change notch-off speed

Step 3
- Plot \(E_i \) & \(t_i \)

Step 4
- \(\theta_i = \frac{\partial E_i}{\partial t_i} \)

Step 5
- Plot \(\theta_i \) and \(t_i \)

Step 6
- Sum up a total running time \(T \)

Step 7
- Determine the optimal running time \(t_i \)
Practical Scheduling with Proposed Methods

- Plot each θ_i and t_i value on a graph with θ_i on the x axis and t_i on the y axis

Step 1
- Calculate E_i & t_i

Step 2
- Change notch-off speed

Step 3
- Plot E_i & t_i

Step 4
- $\theta_i = \frac{\partial E_i}{\partial t_i}$

Step 5
- Plot θ_i and t_i

Step 6
- Sum up a total running time T

Step 7
- Determine the optimal running time t_i
Calculate the sum of the t_i values for each θ_i

- The summation of t_i is a total running time T.
- θ is common energy time sensitivity for all sections.

Steps

- **Step 1**
 - Calculate E_i & t_i

- **Step 2**
 - Change notch-off speed

- **Step 3**
 - Plot E_i & t_i

- **Step 4**
 - $\theta_i = \frac{\partial E_i}{\partial t_i}$

- **Step 5**
 - Plot θ_i and t_i

- **Step 6**
 - Sum up a total running time T

- **Step 7**
 - Determine the optimal running time t_i
● Given the limitation on the total running time T
● Determine the optimal running time t_i in each section

Graphical representation:
- T: Summation (the function of Θ)
- t_i: Section (the function of θ, $i = 3$)
- t_i: Section (the function of θ, $i = 2$)
- t_i: Section (the function of θ, $i = 1$)

Legend:
- $\theta_i = \frac{\partial E_i}{\partial t_i}$

Equations:
- θ_i: Energy Time Sensitivity of the i-th Section
- Θ: Common Energy Time Sensitivity for All Sections

Steps:
1. Calculate E_i & t_i
2. Change notch-off speed
3. Plot E_i & t_i
4. $\theta_i = \frac{\partial E_i}{\partial t_i}$
5. Plot θ_i and t_i
6. Sum up a total running time T
7. Determine the optimal running time t_i
Round the optimal running time to an integer value. The total running time T is changed to T'.

- Choose the largest energy time sensitivity and add 1 s in this section.
- Choose the smallest energy time sensitivity and subtract 1 s in this section.

START

$T > T'$

FINISH
Outlines

• Introduction & Purpose

• Energy-Saving Operation for A Train
 • Power-limiting Brake
 • Advantages of ATO

• Energy-Saving Train Scheduling
 • Basic Approach
 • Application to Practical Train Scheduling with Proposed Methods

• Analysis for Energy-saving Scheduling

• Conclusions & Future Work
Calculation Conditions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Remarks column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cars</td>
<td>4</td>
</tr>
<tr>
<td>Capacity ratio</td>
<td>100%</td>
</tr>
<tr>
<td>Operation</td>
<td>ATO</td>
</tr>
<tr>
<td></td>
<td>Single way</td>
</tr>
<tr>
<td>Environment</td>
<td>Subway</td>
</tr>
<tr>
<td>Number of sections</td>
<td>10</td>
</tr>
<tr>
<td>Total running time</td>
<td>713 s</td>
</tr>
<tr>
<td>Pantograph voltage</td>
<td>DC 1500 V</td>
</tr>
<tr>
<td></td>
<td>DC 1650 V</td>
</tr>
</tbody>
</table>

- 4M0T: Load-compensating device is considered
- Not a round trip
- Platform doors are installed
- In acceleration
- In regeneration
Results of Common Energy Time Sensitivity

Θ: Common Energy Time Sensitivity for All Sections

T: Total Running Time (sec)

- Point at $\Theta = 0.1525$ and $T = 713$ sec
Optimal Running Time from a Practical Point of View.

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Section 2</th>
<th>Section 3</th>
<th>Section 4</th>
<th>Section 5</th>
<th>Section 6</th>
<th>Section 7</th>
<th>Section 8</th>
<th>Section 9</th>
<th>Section 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>t_2</td>
<td>t_3</td>
<td>t_4</td>
<td>t_5</td>
<td>t_6</td>
<td>t_7</td>
<td>t_8</td>
<td>t_9</td>
<td>t_{10}</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>61</td>
<td>0.5039</td>
<td>76</td>
<td>0.1727</td>
<td>48</td>
<td>1.1857</td>
<td>57</td>
<td>0.5273</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td>62</td>
<td>0.4556</td>
<td>77</td>
<td>0.1601</td>
<td>49</td>
<td>0.9099</td>
<td>58</td>
<td>0.4710</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>63</td>
<td>0.4126</td>
<td>78</td>
<td>0.1486</td>
<td>50</td>
<td>0.7020</td>
<td>59</td>
<td>0.4215</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>64</td>
<td>0.3742</td>
<td>79</td>
<td>0.1380</td>
<td>51</td>
<td>0.5444</td>
<td>60</td>
<td>0.3780</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>65</td>
<td>0.3399</td>
<td>80</td>
<td>0.1284</td>
<td>52</td>
<td>0.4243</td>
<td>61</td>
<td>0.3395</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>66</td>
<td>0.3092</td>
<td>81</td>
<td>0.1194</td>
<td>53</td>
<td>0.3322</td>
<td>62</td>
<td>0.3055</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>67</td>
<td>0.2677</td>
<td>82</td>
<td>0.1113</td>
<td>54</td>
<td>0.2614</td>
<td>63</td>
<td>0.2753</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>68</td>
<td>0.2570</td>
<td>83</td>
<td>0.1037</td>
<td>55</td>
<td>0.2065</td>
<td>64</td>
<td>0.2486</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td>69</td>
<td>0.2347</td>
<td>84</td>
<td>0.0968</td>
<td>56</td>
<td>0.1639</td>
<td>65</td>
<td>0.2248</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>70</td>
<td>0.2147</td>
<td>85</td>
<td>0.0904</td>
<td>57</td>
<td>0.1306</td>
<td>66</td>
<td>0.2036</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>71</td>
<td>0.1973</td>
<td>86</td>
<td>0.0845</td>
<td>58</td>
<td>0.1044</td>
<td>67</td>
<td>0.1846</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>72</td>
<td>0.1832</td>
<td>87</td>
<td>0.0790</td>
<td>59</td>
<td>0.0838</td>
<td>68</td>
<td>0.1677</td>
</tr>
<tr>
<td>73</td>
<td>73</td>
<td>73</td>
<td>0.1704</td>
<td>88</td>
<td>0.0739</td>
<td>60</td>
<td>0.0676</td>
<td>69</td>
<td>0.1525</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
<td>74</td>
<td>0.1586</td>
<td>89</td>
<td>0.0693</td>
<td>61</td>
<td>0.0547</td>
<td>70</td>
<td>0.1389</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>75</td>
<td>0.1478</td>
<td>90</td>
<td>0.0649</td>
<td>62</td>
<td>0.0444</td>
<td>71</td>
<td>0.1267</td>
</tr>
<tr>
<td>76</td>
<td>76</td>
<td>76</td>
<td>0.1378</td>
<td>91</td>
<td>0.0609</td>
<td>63</td>
<td>0.0361</td>
<td>72</td>
<td>0.1157</td>
</tr>
<tr>
<td>77</td>
<td>77</td>
<td>77</td>
<td>0.1287</td>
<td>92</td>
<td>0.0572</td>
<td>64</td>
<td>0.0295</td>
<td>73</td>
<td>0.1058</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
<td>78</td>
<td>0.1202</td>
<td>93</td>
<td>0.0537</td>
<td>65</td>
<td>0.0242</td>
<td>74</td>
<td>0.0968</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The image shows a graph with a red arrow pointing to the value 0.1525.
Analysis of Energy Consumption

<table>
<thead>
<tr>
<th>Cases</th>
<th>Basic</th>
<th>Optimised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total running time</td>
<td>713 s</td>
<td>713 s</td>
</tr>
<tr>
<td>Changed sections</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>53.40 kWh</td>
<td>52.40 kWh</td>
</tr>
<tr>
<td>Energy savings</td>
<td>-</td>
<td>1.00 kWh</td>
</tr>
<tr>
<td>Percent energy savings</td>
<td>-</td>
<td>1.9 %</td>
</tr>
</tbody>
</table>
Outlines

• Introduction & Purpose

• Energy-Saving Operation for A Train
 • Power-limiting Brake
 • Advantages of ATO

• Energy-Saving Train Scheduling
 • Basic Approach
 • Application to Practical Train Scheduling with Proposed Methods

• Analysis for Energy-saving Scheduling

• Conclusions & Future Work
Conclusions & Future Work

Conclusions

• (1) Energy-saving railway operation
 • Power-limiting braking

• (2) Energy-Saving train scheduling
 • Optimisation of running time in track sections between stations
 • Practical scheduling method

• Analysis for Energy-saving Scheduling
 • Energy saving effects : 1.9%

Future Work

• Additional timetabling strategies for saving energy
 • Reducing dwell and turnaround times and increasing running time margins
Thank you very much for your attention.

Shoichiro WATANABE

The University of Tokyo
shoichiro@koseki.t.u-tokyo.ac.jp