

Customer-Oriented Evaluation Method of Railway Performance

<u>Fuminori Tsunoda</u>, Masao Yamashiro, Rieko Otsuka, Manabu Kato, Hiroko Sukeda, Kazuhiro Ozeki

East Japan Railway Company, Hitachi, Ltd.

Outline

- 1. Background
- 2. Motivation
- 3. Data stored in ticketing gate
- 4. Definition of SCORE
- 5. Calculation Flow
- 6. Case Study
- 7. Result of SCORE
- 8. The feature of SCORE data
- 9. Visualization Tool
- 10. Demos
- 11. Conclusion & Future work

1. Background

- Transport network is being complex
- Passengers:
 - Demand higher quality service for transport
- Operators:
 - Want to respond passengers' needs
 - Need to evaluate their operation
 - Seek to find a new solution for the train operation
- ICT environment is improving
 - The data of ticketing gates are gathered to the server
 - Smart card user have been increased

2. Motivation

- Improve quality of the transport service
- Establish the Key Performance Index (KPI) for transport operation from the view of passengers
 - Grasp the passengers behavior
 - Understand the effect for disruption
 - Find a new idea for the operation
 - (Praise the dispatcher)
- Obtain an insight of computer algorism for a next generation train control system

3. Data stored in ticketing gate

- Most of stations in Tokyo Metropolitan area installed auto ticketing gate
 - Recoding in and out time to Smart cards and tickets
 - Store the time and ID and transmit to the station server
- The station servers send the data to the center server
- A travel time for each passenger can be calculated

4. Definition of SCORE [1/3]

SCORE (Scale for Customer-Oriented Railway Evaluation)

Before the definition...

The distribution of passengers' total extra time (additional time by the accident)

4. Definition of SCORE [2/3]

SCORE (Scale for Customer-Oriented Railway Evaluation)

$$SCORE = \log\{\sum_{ts=tss}^{tse} [T_{extra}(ts)]\}$$
 (*)

$$T_{extra}(k,ts) = pn(k,ts) \times [tm(k,ts) - st(k,ts)]$$
 (1)

$$T_{extra}(ts) = \sum_{k=1}^{n} [T_{extra}(k, ts)]$$
 (2)

$$Total_T_{extra} = \sum_{ts=tss}^{tse} [T_{extra}(ts)]$$
(3)

4. Definition of SCORE [3/3]

Other Effective Indicators

$$T_{extra}(ts)_{pp} = T_{extra}(ts) / pn(ts)$$
 (1)

Sub SCORE
$$I = \log\{\sum_{ts=tss}^{tst} [T_{extra}(ts)]\}$$
 (2)

Sub SCORE II =
$$\log\{\sum_{ts=tsr}^{tst} [T_{extra}(ts)]\}$$
 (3)

5. Calculation Flow

There are six steps to calculate the SCORE data

6. Case Study

Disruption Case

Case	Date	Time of Occurrence	Re-operating Time	Line	Disruption Section
1	4 th Feb 2010	10:30	11:50	Α	b/w sta. K and sta.O2
2	15 th July 2011	13:34	14:32	A,B	sta. T
3	23 th May 2011	7:12	8:17	А	sta. A
4	21 th June 2011	6:22	7:48	A,B,C	b/w sta. K and sta.O2

Dispatchers' Operation

Case	Operation Details				
1	- Stopped all sections on line A (No turn around operation)				
2				around n conducted	
3	- Stopped all sections on line A (No turn around operation)				
4	 Turn around operation at sta. K on line A (4 trains) Turn around operation at sta. H2 on line A (6trains) Turn around operation at sta. O1 on line B (1 train) Extra train departures from sta. H2 (6trains) Extra train departures from sta. K (4 trains) 		Turn around operation conducted		9

7. Result of SCORE

Case	Duration Time of Disruption	Actual Duration Time SCORE		Sub SCORE I	Sub SCORE II
1	1:20	2:00	6.08	6.00	5.32
2	0:58	0:48	5.64	5.64	-
3	0:56	1:33	6.63	6.61	5.37
4	1:26	3:44	6.79	6.52	6.46

- Comparing Case 1 and Case 2, the SCORE of Case 1 is higher than the one of Case 2
- ⇒ Turnaround operation is effective for the passenger
- Comparing Case 3 and Case 4, the SCORE of Case 3 is lower than the one of Case 4
- => But, the Sub SCORE I of Case 3 is higher than one of Case 4, the Sub SCORE II of Case 3 is lower than Case 4,
- **⇒** Turnaround operation is effective!

Especially, during the time of train operation stopping, the turnaround operation is much more effective

But, after re-operating, it is more difficult to recovery when the dispatcher conduct a turnaround operation.

8. The features of SCORE data

- SCORE data becomes higher during peak time
- Compared in the same time period, the distributed SCORE data means a difference of the disruption influence and/or operational result.

9. Visualization Tool

- The impact of the disruption can be seen as a heat map
- The SCORE data set by the selected conditions can be compared with previous data

Left: Passenger traffic Right: Extra time per passenger

Scatteprlots of SCORE

Left: SCORE vs Duration Time of Disruption Right: SCORE vs Number of Train Cancellations

10. Demos

How does the dispatcher review disruptions?

11. Conclusion and Future Work

- A new evaluation method for railway operation "SCORE(Scale for Customer Oriented Railway Evaluation)" proposed.
- SCORE enables the operator to enhance their operational quality from the viewpoint of passengers with the scientific skill.
- The visualization tool for understanding the train disruption was developed.
- SCORE has an enough potential for marketing, planning, making strategy and so on.

Fin.

Thank you!